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Abstract
Domain boundaries in a solid can be wetted by the layer of a new phase of the
host material. The formation of such a layer is considered for the case where
the defect moves under an external force, and where the order parameter of the
wetting film is a conserved quantity.

PACS numbers: 61.72.−y, 05.70.Fh

The nucleation of a new phase at a moving extended defect [1] generates, via energy dissipation
into the nucleus, a viscous friction force acting on the defect [2]. Above some (temperature-
dependent) velocity threshold this can lead to an unexpected self-acceleration and, as a
consequence, to a morphological instability of the defect [3]. The origin of these phenomena
is a delicate interplay between the defect motion and the formation process of the nucleus.
This has recently been discussed for the model of a simple domain boundary, dressed by
the nucleus of a non-conserved Ginzburg–Landau order parameter [4]. For the case of a
conserved order parameter the overall behaviour turns out to be similar, but shows some
notable peculiarities, which have been worked out in the present paper. The problem is related
to that of grain-boundary dragging by particle diffusion [5], reviewed in [6]. Whereas these
treatments crucially depend on the assumption of a smoothly-varying internal structure of the
grain boundary [7], a sharp-interface approximation is sufficient in the present analysis.

The configurations of the domain boundary at time t will accordingly be described in
the purely geometric form z = Z(x, t) where x are two-dimensional Cartesian coordinates
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vertical to z. In terms of Z(x, t) and the order-parameter field ϕ(r, t) with r ≡ (x, z), the
effective Hamiltonian of the system reads

H =
∫

d2x
[σ

2
(∂Z)2 − kZ

]
+

∫
d3r

[
1

2
(∇ϕ)2 +

ε

2
ϕ2 +

u

4
ϕ4 − κ

2
δ(z − Z) ϕ2

]
. (1)

Here, σ is the stiffness of the defect, ∂ is the two-dimensional nabla operator and k is a driving
force in the z-direction. Furthermore, ε = α(T − Tc) measures the temperature distance from
the bulk critical point of ϕ, and κ quantifies a local reduction of the transition temperature at
the defect.

The dynamics of the system will be modelled by the Edwards–Wilkinson [8] and model-
B-type [9] equations

∂tZ = −�δH/δZ ∂tϕ = D∇2δH/δϕ (2)

where� is the defect mobility and D the diffusion coefficient of the order parameter. Additional
Langevin forces have not been included in (2) since presently we are only interested in the
mean-field behaviour of the system.

At sufficiently high temperatures or velocities a nucleus cannot build up, so that the
mean-field solutions of (2) are Z(x, t) = V t with a constant defect velocity V = � k ≡ F ,
and ϕ(r, t) = 0. A non-trivial solution of the form ϕ(r, t) = �(z − V t) branches off from
the trivial one at the nucleation threshold T = T0(V ) close to which the second equation (2)
can be treated by the bifurcation theory [10]. With the notation ζ ≡ z − V t , one finds the
low-amplitude behaviour

�(ζ ) = Xψ+
0 (ζ ) + O(X3) X ≡ (

d2ψ−
0 ,�

)
(3)

where the scalar product means integration along the ζ -axis. Moreover, ψ+
0 (ζ ;V ) and

ψ−
0 (ζ ;V ) are the lowest right and left bound-state eigenfunctions of the linearized equation for

�. In the case of a non-conserved order parameter this equation has the form of a Schrödinger
equation with the scalar potential −κδ(ζ ) and an imaginary vector potential iv ≡ iD−1V [4].

For a conserved order parameter one instead is led to the eigenvalue problem(
ψ−
α , [d4 + κ d2δ − v d]ψ+

β

) = εα
(
ψ−
α , d2ψ+

β

) = εαδαβ. (4)

Here, α, β label the eigenfunctions and eigenvalues, and d denotes the derivative with respect
to ζ . Compared to the non-conserved case, one notes that the gauge symmetry of the
fictitious Schrödinger problem is missing. Nevertheless, the lowest eigenvalue ε0(v) and
its eigenfunctionsψ±

0 (v) again can be calculated exactly.
The result for the latter reads

ψ±
0 (ζ ) =

(
κ

2ε0

)(1/2)

[!(ζ )ψ±
> (ζ ) + !(−ζ )ψ±

<(ζ )] (5)

where

ψ+
>(ζ ) = q1

q2 − q0

q1 − q2
exp(−q1ζ )− q2

q1 − q0

q1 − q2
exp(−q2ζ )

(6)
ψ+
<(ζ ) = −q0 exp(−q0ζ )

and

d2ψ−
> (ζ ) = ψ+

<(−ζ ) d2ψ−
< (ζ ) = ψ+

>(−ζ ). (7)

In (6) q0, q1, q2 are the roots of the cubic characteristic equations

q3
i − ε0 qi + v = 0 i = 0, 1, 2 (8)

arising from (4), with q0 identified as the always existing real negative solution of (10).
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Figure 1. Branches of solutions of equation (11). Whereas the dotted lines are unphysical
branches, the full line represents the physical solution (13), illustrated in (a), (b), (c) for v = 0,
v = v∗ , and v = vc.

The right eigenfunctions (6) determine the profile of the nucleus, attached to the defect.
In the static case v = 0 one of the roots of (8), say q1, vanishes, so that ψ+

> in (6) reduces to
a single exponential. For v > 0, however, ψ+

> consists, contrary to the non-conserved case,
of two modes. Above some critical velocity v0 ≡ (

2[ε0(v0)/3]3/2
)

the parameters q1, q2 form
a pair of complex quantities. As a consequence ψ+

> displays (strongly) damped oscillations,
corresponding to alternating order-parameter domains of the nucleus in the direction of
propagation.

In order to determine the eigenvalue ε0(v), one has to use the jump condition
dψ+

>(0)− dψ+
<(0) = −κψ+

<(0) which implies

2q2
0 + q1q2 = −κq0. (9)

If this is combined with the equations
q0 + q1 + q2 = 0 q0q1 + q1q2 + q2q0 = −ε0 q0q1q2 = −v (10)

equivalent to (8), one finds for ε0(v) the cubic equation

ε3
0 − κ2

4
ε2

0 +
v

4
(κ3 − 27v) ≡ f (ε0) = 0. (11)

As illustrated in figure 1, equation (11) has a set of three real solutions in the interval
0 < v < vc = (κ/3)3 which is symmetric with respect to the line v = vc/2 ≡ v∗. One
of these solutions can directly be excluded, since it is negative and therefore corresponds
to temperatures below the bulk transition temperature. The other two branches are
positive, monotonically increasing and decreasing, respectively, and intersect each other at
v∗, ε(v∗) ≡ ε∗. The increasing branch again can be excluded, since it is only compatible with
a positive, i.e. unphysical, value of q0. This follows from relations (9) and (10) which imply

q0 = 9(v − v∗)− κ(ε0 − ε∗)
κ2 − 6(ε0 − ε∗)

. (12)
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Figure 2. Isotherms in the force–velocity plane, showing hysteresis above the critical point
F1, V1, T1.

If, e.g., (12) is evaluated at the singular point v = v∗, ε = ε∗, one finds q0 > 0 for the branch
with the positive slope which consequently can be ruled out.

The remaining solution is conveniently represented by the parametric form

ε0 = κ2

12
+
κ2

6

[
!(v∗ − v) cos

φ

3
+ !(v − v∗) cos

φ + 4π

3

]
(13)

cosφ = 1 − 8
v

vc

(
1 − v

vc

)
.

In accordance with figure 1 it decreases monotonically from ε0(0) = κ2/4 via ε0(v∗) = κ2/6
to ε0(vc) = 0, and determines the nucleation threshold T0(V ) ≡ Tc + α−1ε0(D

−1V ) which
qualitatively looks similar to that in the conserved case [4].

Since in (6) q1, q2 can, via (10), be eliminated in favour of q0 which in turn follows
from (12), the mean-field behaviour of (2) close to the nucleation threshold can now be
evaluated explicitly. To lowest order in the expansion (3) the first equation (2) assumes the
form V = F + �κ[ψ+

0 dψ+
0 ]ζ=0X

2, and, after insertion of the result for ψ+
0 ,

V = F − ρ(V )
κ2

4
X2(T , V ). (14)

This looks identical to the corresponding result for the non-conserved case, except for the
redefinition of the ratio of timescales ρ(V ) ≡ �

/[
Dε0(D

−1V )
]
.

In view of (4), the same approximation for the second equation (2) yields
[
(ε − ε0)ψ

+
0 +

u (ψ+
0 )

3X2
]
X = 0. From this an equation for X, consistent with (3), can be projected out by

forming the scalar product with d2ψ−
0 . The result[

τ (T , V ) + u
κ

4
X2(T , V )

]
X(T , V ) = 0 (15)

again has the appearance of the previous one [4], now, however, with the new pre-factor
α(V ) ≡ α (κ/4)

/(
d2ψ−

0 , [ψ+
0 ]3

)
in τ (T , V ) ≡ α(V )[T − T0(V )].

Evaluation of the scalar products in α(V ), and elimination of the amplitude X from (14)
and (15) leads, in the F–V plane, to the set of isotherms shown in figure 2. Above some
critical point F1, V1, T1 ≡ T0(V1) the isotherms show hysteresis, generated by a regime where
∂V/∂F < 0. At the low-velocity limit of this regime the defect experiences a long-wavelength
morphological instability which can be analysed in the way described in [4]. Here we only
point out that the results of the present paper support our belief in the universal character of
these phenomena.

As a final remark we point out that a new non-equilibrium critical exponent arises in our
scenario which presumably is universal in the strict sense of the renormalization group. It is
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defined by ε0 ∝ (vc − v)y and, correspondingly, describes the way in which the nucleation
threshold T0(V ) approaches the critical point Tc. From (13) one can extract the mean-field
value y = 1/2, visible in figure 1, whereas in the non-conserved case one finds y = 1
[4]. In both cases anomalies of these exponents are expected to arise from order-parameter
fluctuations of the bulk as well as of the nucleus.
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